
The Stream Quality Index:  

A Multi-Indicator Tool for Enhancing Environmental 

Management Communication 

 

 

 

 

 

 

Marcus W. Beck, Raphael D. Mazor, Susanna Theroux, Kenneth C. Schiff  

 

Southern California Coastal Water Research Project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

May 2019 

Technical Report ##



i 

 

EXECUTIVE SUMMARY 

Assessment of stream health is a function of the physical, chemical, and biological integrity of 

the water body. While monitoring of all three indicators of stream quality is commonplace, 

combining these three indicators into a unified assessment of stream quality is rare, complicating 

the interpretation of complex environmental health information. In this study, a unified index 

was developed that compares biological response to physical and chemical stressors for southern 

California wadeable streams using a scientifically rigorous, easy-to-understand tool intended to 

facilitate stream management. The Stream Quality Index (SQI) is based on a stressor-response 

empirical model that quantifies the expected likelihood that chemical and physical stressors will 

impact multiple individual components of biological condition. The index’s chemical 

parameters, which are indicative of anthropogenic inputs, include nutrients and conductivity; the 

physical parameters include two physical habitat indices (Index of Physical Integrity, IPI; 

California Rapid Assessment Method, CRAM) that describe instream (i.e., substrate) condition 

and stream corridor (i.e., riparian) condition; and the biological response parameters include 

biological indices for benthic invertebrates and algae. While the individual stressor and response 

components are quantitative and have similar meaning across a variety of environmental settings, 

the final SQI narrative assessment is categorical and designed to be directly actionable within a 

management decision-making context. The four narrative assessment categories are: (1) “healthy 

and unstressed” (i.e., unimpacted biology, no physical or chemical stressors); (2) “healthy and 

resilient” (i.e., stressed, but biological communities are healthy); (3) “impacted and stressed” 

(i.e., impacted biology due to known chemistry and/or physical habitat stressor(s)); and (4) 

“impacted by unknown stress” (i.e., biology is impacted, but chemical and physical stressors are 

low). To facilitate adoption by managers, a web-based application was developed that not only 

maps overall SQI results, but also enables users to readily access underlying quantitative 

information for stressors and biological responses to understand likely reasons behind the 

categorical assessments. This transparent design was intended; high-level output and 

foundational components of the SQI are relevant for different audiences and details are not 

sacrificed for accessibility. 

 

 

 

 

 

 

 

 

 

 



ii 

 

TABLE OF CONTENTS 

Executive Summary ..................................................................................................................... i 

Table of Contents ........................................................................................................................ ii 

Introduction ................................................................................................................................ 1 

Methods ..................................................................................................................................... 2 

General Approach .................................................................................................................. 2 

Biological response components of the SQI ........................................................................... 3 
Characterizing biological condition ..................................................................................... 3 
Integrating multiple measures of biological condition .......................................................... 4 

Stressor components ............................................................................................................. 4 
Characterizing stress .......................................................................................................... 4 
Integrating multiple measures of stress .............................................................................. 6 

Combining stress and response measures into the final SQI assessment .............................. 6 

Calibration and validation of the SQI ...................................................................................... 8 

Selected case studies ............................................................................................................ 9 

Results ....................................................................................................................................... 9 

SQI patterns ........................................................................................................................... 9 

Model precision .....................................................................................................................12 

Model sensitivity to biological decision points ........................................................................16 

Case study results .................................................................................................................17 
San Diego Creek ...............................................................................................................17 
San Juan Creek ................................................................................................................19 

Discussion ................................................................................................................................20 

The SQI web application .......................................................................................................22 

Conclusions ..........................................................................................................................22 

Supplement ...............................................................................................................................23 

Acknowledgments .....................................................................................................................23 

References ...............................................................................................................................24 



1 

 

INTRODUCTION 

Assessments of stream health are a function of monitoring the water body’s physical, chemical, 

and biological integrity (33 USC §§ 1251, 1972). Monitoring physical habitat integrity facilitates 

determination of whether all necessary environmental niches (e.g., hydrology, riparian structure, 

in-stream substrate) are present to support a diverse aquatic community (Maddock 1999). 

Monitoring chemical integrity facilitates determination of whether toxic compounds are present, 

as well as whether minerals are sufficiently balanced to support aquatic life (Maruya et al. 2016; 

Wang et al. 2007). Monitoring biological integrity, which is closest to the actual assessment of 

stream health, facilitates determination of whether unmeasured physical or chemical parameters 

are impacting otherwise balanced ecosystems (Ode et al. 2016; Stoddard et al. 2006), including 

any synergistic effects of measured and unmeasured parameters (Bowman et al. 2006). 

Tremendous effort is expended to monitor all three types of stream integrity indicators. Despite 

varying spatial scales and complexities, all monitoring programs share the challenge of how to 

effectively communicate physical, chemical, and biological data in a scientifically rigorous, 

repeatable, and readily understandable way to non-scientists (National Research Council 1990). 

Because most environmental managers are not scientists, and similarly, scientists may not 

appreciate the applied context for technical products, the communication of ecological data for 

decision-making can be challenging. Furthermore, ecological data are rarely black and white, 

leading to many management decisions made in the “grey zone” (Paulsen et al. 2008). This is 

particularly true when physical, chemical, and biological indicators are not in complete 

agreement with one another. 

Multiple well-known tools exist for effectively assessing and evaluating different components of 

stream condition. Bioassessment tools include the Index of Biological Integrity (IBI; Karr 

(1981)), Observed to Expected ratios (O/E; Hawkins et al. (2000)), and hybrids of the IBI and 

O/E (Mazor et al. 2016). Chemical assessment tools include the Canadian Council of Ministers 

of the Environment (CCME) Water Quality Index (CCME (Canadian Council of Ministers of the 

Environment) 2001; Hurley et al. 2012). Physical habitat assessment tools, which are less 

common, include the California Rapid Assessment Method (Collins et al. 2007; Solek et al. 

2011) and the more recently developed Index of Physical Integrity (Rehn et al. 2018). These 

established tools are typically used to separately address chemical, physical, and biological 

components of the United States CWA. 

An assessment tool that combines physical, chemical, and biological indicators into a single 

unified assessment is exceedingly rare (Bay and Weisberg 2012). Much more commonplace are 

instances where multiple indicators are individually simplified and presented as a group, leaving 

managers to decide which is most important (Paulsen et al. 2008). However, a single unified 

assessment is preferable when communicating stream health to non-technical managers. A single 

scale provides straightforward context for comparing one site to another, for ranking sites for 

management actions, and for monitoring improvements at a site following implementation of 

management actions (or monitoring potential degradation where management actions are not 

implemented). 

While such a unified assessment tool is possible to develop for use in a single environmental 

setting, it has long been a challenge to design a technically robust tool that produces assessments 

that have similar meanings in different environmental settings, that provides clues as to which 
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stressor(s) is/are impacting biological indicator(s), and that can be replicated elsewhere. The goal 

of this study was to develop a tool that meets all three criteria. Because biological indicators 

provide direct measures of aquatic life, while physical and chemical measures provide ancillary 

information about the stressors that may affect aquatic life, this study sought to develop a method 

for combining the three indicators in a way that would preserve the types of information 

provided by each. This is fundamentally different than treating indicators as equivalent and 

simply “averaging” results to assess overall condition. 

METHODS 

General Approach 

The conceptual approach used in this study is based on a stressor-response relationship between 

biology and the stream environment (Figure 1). Specifically, the underlying stressor-response 

relationships that define the final narrative categories for overall stream condition are based on 

empirical models that quantify an expected likelihood of chemical or physical stressors 

impacting the separate components of biological condition. Southern California wadeable 

streams were selected as the focus of this effort because of the extensive and varied levels of 

stress and biological impacts. Moreover, southern California is home to many environmental 

managers with a variety of backgrounds and experience in technical and policy issues. 

 

 

Figure 1. Flowchart representation of the Stream Quality Index (SQI). The overall SQI is a function 
of the likelihood of observing degraded biological condition given the stressors at a site. 
Biological condition is assessed using macroinvertebrate (California Stream Condition Index, 
CSCI) and algal (Algal Stream Condition Index, ASCI) indices and stressors are evaluated based 
on water quality measures (total nitrogen, total phosphorus, conductivity) and physical habitat 
(California Rapid Assessment Method, CRAM; Index of Physical Integrity, IPI). Stress condition is 
empirically linked to biological condition by separate probability functions for chemistry (pChem) 
and physical habitat (pHab). 
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Biological response components were selected based on bioassessment indices developed for 

California wadeable streams (i.e., benthic macroinvertebrates, algae). Water chemistry stressors 

were selected that are strongly associated with biological condition in perennial streams (i.e., 

nutrients, conductivity). Physical habitat indices were selected that quantify flow, channel, and 

riparian condition observed at a site. Specific justification for the chosen stressors and their 

relationship to biology is described below. In short, the conceptual stressor-response model 

reflected by our choice of indicators is generally described as the habitat requirements for 

biological organisms and the alteration (i.e., response) in the structure and function of these 

communities along stressor gradients as habitat quality declines. These relationships establish the 

foundation of many bioassessment methods (Karr 1981; Karr and Chu 1999; Stoddard et al. 

2006) and our stressor-response model reflects these principles. 

The four narrative assessment categories were defined in a way that would align with 

management processes. The SQI web-based application was designed in a way that would give 

users easy access to descriptions of the biological, chemical, and physical components that 

underlie the unified assessment, depending on the desired level of information within the 

stressor-response paradigm. 

Biological response components of the SQI 

Characterizing biological condition 

To characterize biological condition, a pair of quantitative bioassessment indices – for benthic 

macroinvertebrates (BMI) and algal communities, respectively – were used that have been 

developed for California streams (Mazor et al. 2016; Theroux et al. n.d.); the indices were treated 

as complementary assessment tools in the SQI. 

The California Stream Condition Index (CSCI, Mazor et al. (2016)) is a predictive index that 

compares observed benthic macroinvertebrate taxa and metrics at a site to those expected under 

least disturbed reference conditions (sensu Stoddard et al. (2006)). Expected values at a site are 

based on models that estimate the likely macroinvertebrate community relative to factors that 

naturally influence biology (Cao et al. 2007; Moss et al. 1987). 

The Algal Stream Condition Index (ASCI, Theroux et al. (n.d.)) was similarly developed as a 

response endpoint for lower trophic levels; the ASCI is a non-predictive multi-metric index (i.e., 

it uses a uniform, statewide reference expectation) that incorporates both diatoms and soft-

bodied algae. Scores for both indices can range from 0 to ~ 1.4, with a score of 1 at sites in 

reference condition and lower values indicating biological degradation. Both communities are 

used as standard assessment measures for perennial wadeable streams in California. 

Index scores were compared to the distribution of scores at reference sites statewide to identify 

biological condition classes that described the likelihood of biological alteration. For both the 

CSCI and ASCI, the 1st, 10th, and 30th percentiles of scores at reference sites were used to 

categorize sites as very likely to have altered biological condition (scores less than the 1st 

percentile), likely altered (scores between the 1st and 10th percentile), possibly altered (scores 

between the 10th and 30th percentiles), and likely intact (scores greater than the 30th percentile) 

(Table 1). This produced four classes for each index, such that each site had two categories 

describing separate indications of the likelihood of biological alteration in the benthic 
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macroinvertebrate and algal communities. Both response endpoints were jointly considered in 

the calculation of the SQI for evaluating overall biological condition, described below. Analysis 

of multiple assemblages provides a more comprehensive indication of biological condition that 

can confirm overall stream health, and may also provide additional diagnostic information about 

stressors (as different communities may respond to different characteristics of stream habitat). 

Integrating multiple measures of biological condition 

The assigned biological condition categories for each index were combined using a ranking 

system to create a single numeric value that represented an overall condition reflected by both 

biological indices. A technical advisory committee with representatives from local management 

institutions provided guidance on assigning these values in accordance with two principles. First, 

the two indices should be independently applicable, so that an indication of good health in one 

index cannot negate indications of poor health in the other. Second, the numeric values should be 

sensitive to differences between sites in marginal or extreme conditions. For example, the 

numeric value for a sample where both indices indicate likely intact biological communities will 

be higher than for a sample where one index indicates likely intact and the other indicates 

possibly altered. This sensitivity improves detection of small changes in condition. The final 

numeric values ranged from -6 to +5 (Table 1). All negative values indicate impacted conditions. 

 

Table 1. Combined biological condition categories for the benthic macroinvertebrate (BMI) and 
algal indices. The combined categories were used to model the likelihood of biological alteration 
given observed physical and chemical habitat stressors. Sites with combined categories greater 
than or equal to zero were considered biologically healthy and those less than zero (in bold) were 
considered biologically impacted (i.e., response variable in equations (1) and (2)). Individual 
biological categories for the BMI and algal indices were based on percentile distributions of 
scores at reference sites (i.e., 1st, 10th, and 30th percentiles) as likely intact (> 30th), possibly 
altered (10th - 30th), likely altered (1st - 10th), and very likely altered (< 10th). The scores 
associated with the percentiles for each index (CSCI, ASCI) are in parentheses. 

 

Algae likely 
intact: (ASCI > 
0.93) 

Algae possibly 
altered: (ASCI 0.83 - 
0.93) 

Algae likely altered: 
(ASCI 0.70 - 0.83) 

Algae very likely 
altered: (ASCI < 
0.70) 

BMI likely intact: 
(CSCI > 0.92) 

5 3 -1 -2 

BMI possibly altered: 
(CSCI 0.79 - 0.92) 

3 2 -2 -4 

BMI likely altered: 
(CSCI 0.63 - 0.79) 

-1 -2 -3 -5 

BMI very likely 
altered: (CSCI < 
0.63) 

-2 -4 -5 -6 

 

Stressor components 

Characterizing stress 

Water chemistry and physical habitat measurements, which were used to describe stressors 

associated with low CSCI and ASCI scores (Mazor 2015; Theroux et al. n.d.), are strongly linked 
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to the structure and function of both invertebrate and algal assemblages (Pan et al. 2002; 

Richards et al. 1997; Wang et al. 2007). Depending on the context, physical habitat can be 

considered a response metric of stream health. However, physical habitat herein is considered a 

stressor that can affect biological condition at different taxonomic levels within the stressor-

response model. 

The water chemistry indicators consisted of nutrients - specifically, total nitrogen (mg/L) and 

total phosphorus (mg/L) - and specific conductivity (𝜇S/cm). Nitrogen, phosphorus, and 

conductivity are widely measured in many regional and statewide monitoring programs. These 

variables are commonly associated with development gradients present in the study region (e.g., 

urbanization, Dodds et al. (2002), Walsh et al. (2005)). Additionally, these variables can act as 

surrogates for unmeasured or alternative water quality problems at a site related to eutrophication 

(e.g., temperature, light penetration, Dodds and Smith (2016)). Although other contaminants that 

can affect aquatic organisms are sometimes measured (e.g., metals, pesticides, pharmaceuticals), 

observations can be sparsely distributed in the study region (Mazor 2015). Eutrophication is a 

more ubiquitous issue in the study region, although we acknowledge that other stressors not 

captured by the SQI may affect biological condition. 

Physical habitat conditions at a site were quantified using two indices of habitat condition 

developed for California water bodies: the Index of Physical-Habitat Integrity (IPI; Rehn et al. 

(2018)) and the California Rapid Assessment Method (CRAM) for riverine wetlands (Collins et 

al. 2007; Solek et al. 2011). Although IPI and CRAM scores can be correlated, the individual 

metrics that establish each index provide unique information about speciic components of the 

physical habitat. Moreover, IPI scores specifically describe instream condition, whereas CRAM 

scores describe riparian condition. 

The IPI is an O/E index (Hawkins et al. 2000) based on physical habitat metrics (PHAB, (Rehn 

et al. 2018)) that collectively characterize five components of in-stream habitat quality: percent 

sands, fines, or concrete, Shannon diversity of aquatic habitat types, Shannon diversity of natural 

substrate types, evenness of flow habitat types, and riparian vegetation cover. All five metrics are 

positively associated with physical habitat integrity, such that an increase in each was generally 

considered an improvement in site condition (percent sands and fines is inversely scored). All 

physical data used to calculate these metrics were collected using standard field protocols 

described in Ode (2007), which are derived from protocols used in national assessments (USEPA 

(U.S. Environmental Protection Agency) 2016). As with the CSCI, the IPI is a predictive index, 

and values for most metrics are compared to site-specific expectations appropriate for the 

stream’s environmental setting. The IPI ranges from 0 to ~1.4, with values less than 1 indicating 

departure from reference conditions. 

In contrast to the IPI, CRAM is based on qualitative assessments of four attributes of riparian 

wetland function: landscape and buffer condition, hydrologic condition, physical structure, and 

biotic structure. Whereas the data for the IPI is derived from numerous quantitative 

measurements of physical habitat components collected along several transects, CRAM 

attributes are assessed on a whole-reach scale through visual observation. In general, CRAM 

characterizes larger-scale processes affecting stream condition both within and adjacent to the 

stream corridor, whereas the IPI focuses more narrowly on in-stream conditions. CRAM scores 

range from 25 to 100, with higher values indicating less degraded conditions at a site. 
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Integrating multiple measures of stress 

The combined impact of habitat or chemistry stressors on biological condition was evaluated by 

developing stress-response models that calculate the probability of observing poor biological 

conditions given observed levels of chemical or habitat stress. This approach eliminates the need 

to identify potential thresholds for identifying high levels of stress while also accounting for their 

combined impacts. 

For both types of stress, a generalized linear model (Fox and Weisberg 2011) was fit to 

calibration data for Southern California streams to quantify associations for each separate water 

quality or physical habitat measure with binomial categories for altered or unaltered biology. 

Two models were developed: 

𝑝𝐶ℎ𝑒𝑚: 𝑝(𝑏𝑖𝑜) ∼ 𝛽0 + 𝛽1𝑇𝑁 + 𝛽2𝑇𝑃 + 𝛽3𝑐𝑜𝑛𝑑  (1) 

𝑝𝐻𝑎𝑏: 𝑝(𝑏𝑖𝑜) ∼ 𝛽0 + 𝛽1𝐶𝑅𝐴𝑀𝑏𝑙𝑐 + 𝛽2𝐶𝑅𝐴𝑀𝑝𝑠 + 𝛽3𝐼𝑃𝐼𝑃𝐶𝑇_𝑆𝐴𝐹𝑁  (2) 

where 𝑝(𝑏𝑖𝑜) is the probability of biological alteration in equations (1) and (2) given the 

indicators for each chemistry or physical habitat variable. The probability of alteration is 

modelled using a logit link function for binomial variables, as 𝑙𝑜𝑔(𝑝/(1 − 𝑝)), where 𝑝 defines 

the presence or absence of altered biology described above. Both models were created by 

screening collinear predictors by removing those with variance inflation factors (VIF) greater 

than three (Zuur et al. 2007). The most parsimonious model was then identified using backward 

and forward selection to minimize Akaike Information Criterion (Akaike 1973; Venables and 

Ripley 2002). The selected variables for each model are shown above (equation (1), TN: total 

nitrogen, TP: total phosphorus, cond: specific conductivity; equation (2), CRAM𝑏𝑙𝑐: CRAM 

buffer landscape condition, CRAM𝑝𝑠: CRAM physical structure, IPI𝑃𝐶𝑇_𝑆𝐴𝐹𝑁: IPI % sands and 

fines). 

An overall likelihood of biological alteration from both chemistry and physical habitat stressors 

was also estimated as a multiplicative function for 𝑝𝐶ℎ𝑒𝑚 and 𝑝𝐻𝑎𝑏: 

𝑝𝑂𝑣𝑒𝑟𝑎𝑙𝑙: 𝑝(𝑏𝑖𝑜) ∼ 1 − ((1 − 𝑝𝐶ℎ𝑒𝑚) × (1 − 𝑝𝐻𝑎𝑏))  (3) 

The inverse of the likelihoods was used to represent an additive effect of both chemistry and 

physical habitat stressors. Equations (1), (2), and (3) provided the empirical estimates of 

biological alteration that were used to define the categorical outputs of the SQI, defined below. 

Combining stress and response measures into the final SQI assessment 

The empirical framework for the binomial models and combined biological condition categories 

established a basis for the categorical descriptions from the SQI output. These descriptions 

linked the quantitative data to management actions, such that the results were easily interpreted 

with an indication of biological condition and the relevant stressors which may or may not be 

related to condition. For the components in Figure 1, categorical outputs are provided by the 

index for the overall SQI, the biological condition, and the stress condition (Figure 2). The 

categorical outputs were created from a matrix combination of the respective inputs. 
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Figure 2. Categorical site descriptions that are possible from the Stream Quality Index (SQI). The 
overall SQI is described as the possible outcomes from biological and stress conditions. The 
biological conditions are described by the possible outcomes from the CSCI and ASCI. The stress 
conditions are described by the possible outcomes from the chemistry and habitat stressors. A 
fifth stress category is possible because stress from both chemistry and habitat was 
multiplicative. 

 

The overall SQI assessment categories describe four possible combinations of biology and 

stressors at a site from the binary categories of altered/unaltered biology and stressed/unstressed 

conditions: (1) healthy and unstressed, (2) healthy and resilient, (3) impacted by unknown stress, 

and (4) impacted and stressed. 

Separate categorical outputs were also created for the biological condition and stressor condition 

categories. The four possible outputs for the biological categories were based on the four 

combinations from the combinations of high/low CSCI and high/low ASCI: (1) healthy, (2) 

impacted for CSCI, (3) impacted for ASCI, and (4) impacted for both. The possible stressor 

condition categories for a site were based on the four outcomes of the combinations of high/low 

chemistry stress and high/low physical habitat stress: (1) low stress, (2) stressed by chemistry, 

(3) stressed by habitat, (4) stressed by both, and (5) stressed by low levels of chemistry and 

physical stress. The fifth stress category was possible based on the additive effects of both 
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stressors when both were low (i.e., if 𝑝𝑂𝑣𝑒𝑟𝑎𝑙𝑙 exceeded the threshold even though 𝑝𝐶ℎ𝑒𝑚 and 

𝑝𝐻𝑎𝑏 did not). 

Thresholds for biological indices that defined altered/unaltered condition for the SQI categories 

were based on the tenth percentile distribution of scores at reference sites for each index. 

Thresholds for high/low stress categories were based on a 90% likelihood of observing a 

biological impact from the empirical models. The stress threshold was identified by a technical 

advisory group and was chosen to provide a relatively even distribution of sites in the high/low 

stress categories. The threshold is reflective of the distribution of observations in the calibration 

dataset that had many sites in poor biological condition and was chosen strictly to create a more 

balanced distribution of stress categories. Alternative thresholds should be used when applying 

the model in regions with different or diminished stressor gradients. 

Finally, the use of a predictive model to identify healthy/impacted biology and the use of biology 

as a component of the index (i.e., the categorical outputs) may seem circular. However, we note 

that the empirical models in equations (1), (2), and (3) define the likelihood of alteration that 

relates stress to biology to define the overall SQI output (e.g., healthy and impacted). The 

biological categories as a component of the index are the modelled response endpoints in the 

models, but also serve as standalone endpoints that describe biological condition in the absence 

of the stressor-response model. 

Calibration and validation of the SQI 

All data used to calibrate and validate the SQI were from the Southern California Stormwater 

Monitoring Coalition (SMC) regional watershed monitoring program in coastal southern 

California (Mazor 2015, Figure 3). The SMC dataset represents the most comprehensive source 

of wadeable stream data in southern California. Because the SQI requires synoptic biological, 

chemistry, and physical habitat data, the final dataset used for model calibration represents only 

the subset of the SMC dataset where all three components were simultaneously collected. Made 

up of 266 sites – 75% of which were used for model calibration – this subset includes sampling 

dates ranging from 2009 to 2016, with relatively even distribution of samples between years. 

Most sample events occurred between May and June following standard protocols for perennial 

stream surveys (Ode 2007). Only one sample event for each site was considered. 

The SQI was evaluated for precision (i.e., how well the underlying empirical model described 

the likelihood of biological alteration) and sensitivity (i.e., how sensitive the model output is to 

changing thresholds that define the categorical conditions). The first analysis evaluated precision 

in the validation dataset to determine agreement between the model and actual stress and 

biological conditions. For the second analysis, two critical decision points that affected the 

model output and categorical results of the SQI were varied to evaluate changes on overall site 

counts in each final SQI category. In Table 1, all sites with combined values greater than or 

equal to zero were considered healthy and those less than zero were considered impacted. The 

effect of varying the cutoff point for healthy and impacted biology was analyzed by comparing 

changes in the SQI assessment categories at different levels from -6 (all healthy) to 6 (all 

unhealthy). Changes in the threshold for the likelihood of observing altered biology that defined 

the categorical results were also evaluated. 
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Figure 3. Land cover and elevation gradients in the study region in southern California, USA 

 

Selected case studies 

SQI results for two examples were explored in detail to provide a narrative description of how 

the index can be used to inform management of water quality in perennial streams. The first 

example describes SQI results in an urban channel with impacted biology (County of Orange) to 

complement a previous causal assessment study to identify potential stressors of low CSCI 

scores. The second example describes a natural channel with impacted biology but low stress 

that is highlighted in a draft regional basin plan for biological objectives for the San Diego 

region. Both examples demonstrate how the SQI can be used in the context of existing, site-

specific information to support management. 

RESULTS 

SQI patterns 

Among all sites, the overall SQI categorized a majority of sites as having altered biology under 

high stress conditions (impacted and stressed, 71% of sites, Table 2). Almost 20% of sites were 

in the opposite category of unaltered biology in low stress conditions (healthy and unstressed). 

https://www.waterboards.ca.gov/sandiego/water_issues/programs/basin_plan/bio_objectives/doc/R9_Biological_Objectives_Staff_Report_Feb2019.pdf
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For the remaining two categories of the overall SQI, only 3% had unaltered biology but were 

under high stress conditions (healthy and resilient), whereas 6% sites had altered biology not 

related to physical or chemical stressors (impacted by unknown stress). 

 

Table 2. Counts of sites in each of the categorical outputs from the SQI. For every SQI output 
(biological condition, overall SQI, stress condition), a site is categorized as one of four possible 
outcomes. 

SQI output Category Count (percent) 

Overall SQI Healthy and unstressed 51 (19.1) 

 Healthy and resilient 9 (3.4) 

 Impacted and stressed 189 (70.8) 

 Impacted by unknown stress 18 (6.7) 

Biological condition Healthy 60 (22.5) 

 Impacted for ASCI 43 (16.1) 

 Impacted for CSCI 30 (11.2) 

 Impacted for CSCI and ASCI 134 (50.2) 

Stress condition Low stress 69 (25.8) 

 Stressed by chemistry and habitat degradation 107 (40.1) 

 Stressed by chemistry degradation 56 (21) 

 Stressed by habitat degradation 13 (4.9) 

 Stressed by low levels of chemistry or habitat degradation 22 (8.2) 

 

For the biological condition category, sites with altered conditions were more often altered for 

both CSCI and ASCI scores (50%) than the other categories (i.e., altered for only one index). For 

sites with one low-scoring index, more sites were altered for the ASCI (16%) than the CSCI 

(11%). Less than a quarter of all sites had unaltered biology (23%). 

For stress conditions, 40% of sites were stressed by both chemistry and physical habitat stressors. 

More sites were stressed by water chemistry (22%) than physical habitat degradation (5%) if 

only one stressor was present. Over 25% of sites had low stress, and 8% of sites were stressed by 

the additive effect of both low chemistry and physical habitat stressors. 

Spatial patterns among SQI categories in southern California generally followed elevation and 

land use gradients (Figures 3, 4). More altered biological communities and high stress conditions 

were observed toward coastal areas at lower elevation where urbanization is highest (e.g., Los 

Angeles, Orange County, Ventura, San Diego). Sites with altered biological condition showed 

similar spatial patterns as the overall SQI, although sites altered only for the ASCI were more 

often observed at mid-elevation across the study region, whereas sites altered only for the CSCI 

were more common at higher elevation areas in central and northern areas of the study region. 

Stress condition patterns were similar to biology, although low stress conditions also occurred at 
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higher elevation areas in each watershed. This produced a handful of sites that had altered 

biology under low stress conditions at mid-elevation ranges (i.e., impacted by unknown stress, 

Table 2). 

 

Figure 4. Categorical site descriptions for the Stream Quality Index (SQI) at monitoring sites in 
Southern California. The overall SQI (top) is described as the possible outcomes from biological 
(middle) and stress conditions (bottom). The biological conditions are described by the possible 
outcomes from the CSCI and ASCI. The stress conditions are described by the possible outcomes 
from the chemistry and habitat stressors. 
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Model precision 

The distinction between healthy and impacted biological communities was well-described by the 

estimated likelihood of biological alteration provided by the empirical models (Figure 5). 

Relatively good separation was observed between sites designated as healthy or impacted in the 

validation (dark grey boxes) data for the three stressor-response models. Slightly larger 

differences between the likelihood of alteration for healthy and impacted communities were 

observed for the chemistry model compared to the physical habitat model, suggesting an 

improved fit for the former (for healthy/impacted communities at validation sites, t = 5.89, df = 

19.09, p < 0.001 for pChem; t = 6.26, df = 26.51, p < 0.001 for pHab). For the overall likelihood 

of biological alteration (pOverall), more sites were greater than 90% likely to be altered in the 

impacted category as compared to the separate pChem and pHab models. For all cases (pChem, 

pHab, pOverall), there were no systematic differences in model results between calibration and 

validation datasets both qualitatively (similar distribution in the boxplots) and quantitatively 

(𝑝 > 0.05 for the interaction and fixed effect of site type in linear models describing likelihood 

of alteration between impact categories and site type). 

 

Figure 5. Boxplot distributions of the modelled likelihood of biological alteration relative to water 
chemistry (pChem, eqn. (1)) and physical habitat variables (pHab, eqn. (2)) and the additive overall 
stress as the product between the two (pOverall, eqn. (3)). Groups are separated into healthy or 
impacted biological condition at each site (Table 1) as the response measure for each model and 
by calibration/validation datasets (3:1 split). Model precision can be evaluated by comparing the 
differences between the boxplots for the validation data for healthy and impacted categories, 
whereas model bias can be assessed by comparing the distributions between calibration and 
validation data among biological state and models. Points show the four possible categorical 
outcomes from the overall SQI. CSCI: California Stream Condition Index, ASCI: Algal Stream 
Condition Index. 

 

The underlying empirical models provided insight into instream characteristics that were related 

to the likelihood of biological alteration (Figures 6, 7). About 77% of sites (n = 205) had greater 
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than 50% likelihood of biological alteration from water chemistry stressors, and 84% (n = 224) 

had greater than 50% likelihood of biological alteration from physical habitat stressors (Figure 

6). Collectively, 97% (n = 258) of sites had greater than 50% likelihood of biological alteration 

from the overall stress of both chemistry and physical habitat stressors. 

 

Figure 6. Relationship between stress models for water chemistry (pChem, eqn. (1)) and physical 
habitat (pHab, eqn. (2)). Stress models for water chemistry and physical habitat were created 
based on the likelihood of biological alteration for the observed stress measures. The overall 
stress measures (pOverall, eqn. (3)) is the product of both stress models shown in the left plot. 
Points represent estimated stress at a single site, with shapes showing the biological condition. 
The right plot shows the same points but colored by the stress condition categories that are 
defined by thresholds from the dotted lines. 
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Figure 7. Modelled likelihood of biological alteration from water quality (top) and physical habitat 
stressors (bottom). Curves are the binomial likelihood (+/- standard error) of biological condition 
being altered (as measured by macroinvertebrate and algal indices) across the range of observed 
values for water quality and physical habitat stressors on the x-axes. The water chemistry and 
physical habitat stress plots are derived from equations (1) and (2). Other variables in each model 
not on the x-axis for each plot are held constant at values for low stress conditions. Biological 
condition for observations in each stressor model is shown as rug plots on the x-axes, with 
healthy sites on the bottom and impacted on the top. 

 

Water chemistry and physical habitat predictors included in the empirical response models for 

pChem and pHab (equations (1), (2)) explained a substantial portion of variability among sites 

related to the occurrence of biological alteration (Table 3). The pChem model explained 64% of 

the variation among sites, whereas the pHab model explained 42%. All variables in the pChem 

model had VIF values less than 3 and were also included in the final set of predictors after model 

selection. All predictors in the pChem model were significantly and positively associated (𝑝 <
0.05) with the occurrence of biological alteration. For the pHab model, three predictors were 

removed that had VIF values greater than three (diversity of natural substrate, biological 

structure, and hydrology). Predictors included in the final pHab model after variable selection 
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were buffer and landscape condition, physical structure, and percent sands and fines. All 

predictors were negatively associated with the likelihood of biological alteration, whereas buffer 

landscape condition had the only significant association. 

 

Table 3. Summary of empirical stress models to quantify associations of water chemistry (pChem) 
and physical habitat (pHab) predictors with biological alteration. Generalized linear models were 
fit to predict the likelihood of both healthy benthic macroinvertebrate and algal communities at 
calibration sites (75% of n = 267 sites). 

 pChem pHab 

Constant 1.68  11.02 *** 

 (0.93)  (2.09)  

log(TN) 1.12 *    

 (0.51)    

log(TP) 2.29 ***   

 (0.61)    

Conductivity 0.00 ***   

 (0.00)    

CRAM buffer landscape condition   -0.08 *** 

   (0.02)  

CRAM physical structure   -0.02  

   (0.01)  

IPI percent sands and fines   -1.67  

   (1.00)  

N 200  200  

AIC 102.58  159.86  

BIC 115.78  173.05  

Pseudo R2 0.68  0.40  

 *** p < 0.001; ** p < 0.01; * p < 0.05. 

 

Figure 7 demonstrates how the individual components for each stressor model were related to 

likelihood of alteration. These partial dependency plots were created by estimating the likelihood 

of alteration across a range of values for each predictor, while holding other predictors constant. 

For each plot, the variables in each model (equations (1), (2)) not on the x-axis were held at 
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approximate values that were associated with low stress to better understand how biological 

alteration may be related to each predictor. For water chemistry stressors, all were positively 

associated with likelihood of alteration, particularly conductivity which had the steepest per-unit 

increase in likelihood. Associations of biological alteration with physical habitat predictors were 

also as expected, except that decreases in likelihood of biological alteration were observed with 

increases in the three predictors (all are associated with habitat integrity). The strongest 

relationship was observed with increases in CRAM buffer landscape condition, where likelihood 

of alteration decreased sharply with scores greater than 60. 

Model sensitivity to biological decision points 

Results in Figure 8 show changes in the categorical SQI results based on different decision 

points that defined biological condition. As a general trend, lowering the cutpoint for 

healthy/impacted to designate more sites as healthy (-6) resulted in an increase in the number of 

sites designated as “low stress” for the stress condition. For the overall SQI, lowering this 

cutpoint also increased the number of sites designated as “healthy and unstressed” or “impacted 

by unknown stress”. Conversely, increasing the cutpoint for healthy/impacted to designate more 

sites as impacted (-6) caused in increase in the number of sites designated as “stressed by 

chemistry and habitat” for the stress condition and sites as “impacted and stressed” or “health 

and resilient” for the overall SQI. 

 

Figure 8. Changes in stress condition (left) and overall SQI categories (right) for different cut 
points that define healthy or impacted biology. Lower cutpoints mean more sites are designated 
as healthy, whereas higher cutpoints mean more sites are designated as impacted. The 
healthy/impacted categories are those modelled by equations (1), (2), and (3) that relate stress 
measures to biology. The cut point definitions are shown in Table 1. 

 

Changing the threshold for the likelihood values that defined stressed biology also affected the 

categorical results (Figure 9). Higher thresholds shifted the number of sites to low stress 

conditions, whereas lower thresholds had the opposite effect of assigning more sites to high 

stress conditions. The number of sites that were stressed by low levels of both water chemistry 

and habitat conditions were relatively unchanged with different thresholds. The overall SQI 

categories were less affected by changing thresholds for the stress condition than for changing 
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the cutpoint that defined healthy/impacted biology. However, higher thresholds shifted some 

sites from the impacted and stressed category to the impacted by unknown stress category and 

from the healthy and resilient category to the healthy and unstressed category. 

 

Figure 9. Changes in stress condition (left) and overall SQI categories (right) for different 
thresholds defining the stress categories. Lower thresholds mean more sites are designated as 
high stress, whereas higher thresholds mean more sites are designated as low stress. Sites are 
designated as low/high stress using the continuous likelihoods from the fitted models in 
equations (1), (2), and (3) that relate stress measures to healthy/impacted biology. The dotted lines 
in Figure 7 show stress thresholds set at 90%. 

 

Case study results 

San Diego Creek 

San Diego Creek is a coastal stream in the County of Orange (33.689722N, -117.821853W) that 

drains the San Joaquin Hills and Loma Ridge into the Newport Bay estuary. The watershed is 

heavily urbanized and most of the creek has been engineered for flood control as a concrete-lined 

or reinforced channel with no natural riparian structure. The creek is designated for aquatic life 

(wildlife and warmwater habitat) and recreational (contact and non-contact) uses under the 

regional water quality control plan. Bioassessment results from the CSCI have shown that the 

structure and function of macroinvertebrate communities is very likely altered from reference 

conditions (Figure 10a). 
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Figure 10. Results from the SQI for selected sites on (a) San Diego Creek (County of Orange, 
California, USA) and (b) San Juan Creek (County of Orange). Causal assessment analyses have 
been completed on San Diego Creek to identify stressors related to low CSCI scores. San Juan 
Creek is an example where biological impacts are observed, whereas chemistry and physical 
habitat stressors are low. Images are based on screenshots from the online application for 
exploring SQI results (see supplement, https://sccwrp.shinyapps.io/SQI_Shiny). 

 

The dataset used to develop the SQI included five sites on San Diego Creek with one sample in 

2010, three in 2011, and one in 2016. Biological condition at these sites was poor with ASCI 

scores ranging from 0.45 to 0.79 and CSCI scores ranging from 0.22 to 0.53. All sites were 

impacted for both CSCI and ASCI scores. The SQI stressor condition for all five sites indicated 

nearly a 100% likelihood of chemistry and physical habitat stressors impacting biology, with a 

100% likelihood of overall stress based on the combined effects of both. Average total nitrogen, 

total phosphorus, and conductivity were 8.1 mg/L, 0.2 mg/L, and 2077 𝜇S/cm, placing the creek 

in the 91st, 79th, and 75th percentiles for water chemistry, respectively, among all sites in the 

complete dataset. Similarly, CRAM and IPI scores averaged across sites were 46 and 0.52, 

https://sccwrp.shinyapps.io/SQI_Shiny
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placing the creek in the 24th and 23rd percentiles for the SMC region. The overall SQI category 

for all five sites was “impacted and stressed” (Figure 10a). 

An independent causal assessment study was conducted in 2018 to determine the causes of 

biological impairment in San Diego Creek (Shibberu et al. 2018). A detailed description of 

causal assessment is beyond the scope of this paper, although in short, causal assessment is a 

formalized approach using multiple indicators to characterize stressors as likely, unlikely, or 

indeterminate causes for the biological condition observed in a system (Norton et al. 2014; Schiff 

et al. 2015). This differs from the SQI approach where the stressors are based on association 

alone. For San Diego Creek, the potential stressors that were evaluated included sediment 

accumulation, channel engineering, nutrients, temperature, conductivity, and pesticides. The 

causal assessment concluded that sediment accumulation and elevated water temperature 

resulting from channel alteration, combined with sediment-bound pesticides, were the most 

likely causes of low CSCI scores. Alternatively, nutrients, although elevated, were evaluated as 

not likely. The lack of a causal link between nutrients and biological condition may be related to 

the assessment’s focus on CSCI scores as its biological endpoint and that sufficient algal data 

were unavailable at the time (ASCI scores were not evaluated). As such, the SQI results are 

supported by causal assessment, with the latter providing a more comprehensive evaluation of 

links between stressors and biological condition and insight into potential sources of the 

stressors. 

San Juan Creek 

San Juan Creek is located in the County of Riverside (33.606546N, -117.446041W) and drains 

into the Capistrano Bight, about 25 km south of Newport Bay. San Juan Creek originates in the 

Santa Ana mountains that are largely undeveloped, whereas lower portions of the creek are 

engineered for flood control in the urbanized areas of the watershed. The upper portion of San 

Juan Creek was described in a regional basin plan (San Diego Regional Water Quality Control 

Board) as not attaining aquatic life uses because CSCI scores were lower than the tenth 

percentile of scores observed at reference sites. However, both physical habitat and water 

chemistry parameters at the assessment site suggested conditions were adequate to support biotic 

integrity. Toxicity tests also showed 100% survival of Ceriodaphnia dubia, providing evidence 

that sediment contaminants (e.g., metals, pesticides) were unlikely stressors impacting biology at 

the site. 

The SQI results for the sampling station in the upper San Juan Creek confirmed the above results 

by categorizing the site as “impacted by unknown stress” (Figure 10b). The CSCI score at the 

site is 0.68, whereas the ASCI score is close to reference conditions at 0.94; the biological 

condition category for the SQI indicates the site is impacted for the CSCI only. The likelihood of 

biological alteration was estimated as 15% from chemistry stress and 51% from physical habitat 

stress, with a combined likelihood of 59% from overall stress. Total nitrogen, total phosphorus, 

and conductivity were 0.3 mg/L, 0 mg/L, and 153 𝜇S/cm, placing the site in the 21st, 7th, and 

2nd percentiles for water chemistry, respectively, among all sites. Similarly, CRAM and IPI 

scores were 94 and 1.06, placing the creek in the 98th and 85th percentiles for the SMC region. 

As such, initial results suggest that neither chemistry nor physical stressors are impacting 

biological condition. Chosen management actions at this site are dependent on regional priorities 

and applicable regulatory requirements. 
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DISCUSSION 

The Stream Quality Index offers a solution for watershed managers seeking to synthesize large 

amounts of physical, chemical, and biological data about stream health. Using the SQI, users can 

both recognize large-scale patterns in data from multiple indicators, and improve how the data 

are communicated to high-level, non-technical environmental managers. This need is particularly 

pressing in regions like southern California, where large-scale landscape alteration and 

competing demands for water usage require managers to prioritize limited resources and 

management actions. As shown by the application of the SQI to stream data from southern 

California, this tool can be used to prioritize sites for management activities on a large scale. 

Conversely, the SQI can be used as a valuable communication tool to highlight areas where 

biological objectives are not being met, perhaps motivating additional investigations to identify 

specific stressors in a more rigorous framework (e.g., San Diego Creek case study). 

While the simplest way to synthesize indicators would be to treat them equivalently and simply 

“average” the results, this approach would mask the types of information provided by each, and 

ultimately could not effectively characterize situations where these indicators disagreed – a 

common situation in the SMC data set. Dobbie and Clifford (2014) evaluated sources of 

uncertainty for an integrative index of estuarine health that was based on averaging separate 

water quality components across different spatial units. By their own admission, averaging 

indicators raised concerns about the consistency and validity of interpretation and their results 

showed that the composite index was indeed sensitive to the parameters for averaging. 

Accordingly, To properly capture relationships among indicators of stream quality in a way that 

is consistent with conceptual modeling of a healthy stream ecosystem, it was crucial to develop 

an index that accurately reflects biology’s role as a direct measure of condition, and that reflects 

physical and chemical indicators as measures of stress. In other words, a finding of good water 

chemistry should not obscure or distort an indication of poor biology, and vice versa. 

As a categorical index, the SQI provides a readily interpretable description of stream conditions 

that is easily accessible through a web-based application. The four condition categories defined 

by the index (i.e., healthy and unstressed, healthy and resilient, impacted and stressed, impacted 

by unknown stress) can be understood by a general audience that may not need the underlying 

data and tools used to analyze them. In contrast, numeric indices require a benchmark or other 

appropriate context to interpret scores; without this information, it can be difficult to identify 

which values of a numeric index correspond to healthy conditions requiring protection, and 

which values correspond to impacted conditions requiring intervention. Defining the condition 

categories from empirical models that are ultimately linked to continuous data provided a 

quantitative link between the two. 

The SQI also addresses the challenge of synthesizing large amounts of information about stream 

condition without losing the individual components, which are readily available to the user for 

more in-depth exploration because the index is hierarchical. This provides a critical service by 

allowing users to identify likely reasons behind the categorical classification for a given site. In 

other words, users can determine which biological indicators account for a stream’s health rating, 

along with which stressors may or not be associated with biological condition. Users also can 

identify presence or absence of physical and/or chemical stressors included in the empirical 

model, and which components in equations (1) and (2) may be linked to their respective stressor 
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categories. Further, physical habitat measures (i.e., CRAM and IPI) include component metrics 

that can serve as additional diagnostic information to describe physical conditions (e.g., percent 

sands and fines, shading, diversity of natural substrates, etc.). An evaluation of component 

metrics for sites that are stressed by physical habitat may reveal which stream characteristics 

could be prioritized to improve condition (e.g., reduce bank erosion or increase riparian cover). 

Tools that are similar to SQI have been developed, although key differences exist. The Canadian 

Water Quality Index (CWQI, CCME (Canadian Council of Ministers of the Environment) 

(2001), Hurley et al. (2012)) evaluates the scope, frequency, and amplitude of water quality 

objective exceedances for numerous parameters, resulting in a numeric value that ranges from 0 

(poor) to 100 (excellent). This approach is appropriate for assessing compliance with regulatory 

criteria at sites where monitoring covers many parameters and occurs at regular intervals (i.e., at 

selected sites of interest, such as below discharge points or at mass-emission stations). In 

contrast, the SQI is better suited for ambient monitoring programs (e.g., Mazor (2015); USEPA 

(U.S. Environmental Protection Agency) (2016)) that typically sample many sites with little or 

no replication and that focus on just a few indicators broadly indicative of water chemistry 

conditions rather than a large suite of potential stressors. Our approach is also applicable to 

indicators where thresholds are unavailable (e.g., CRAM or IPI), but where the relevance for 

measuring aquatic life support is maintained even when it has less bearing on regulatory 

compliance than with other approaches, such as the CWQI. Finally, the SQI approach can be 

directly interpreted without familiarity of established benchmarks because the empirical stress 

models in the SQI are expressed as probabilities of degrading biological condition, rather than 

discrete thresholds that may not have context. 

Our theoretical framework for the SQI is not without drawbacks. The index as designed cannot 

accommodate additional or fewer indicators of stream condition/stress - a contrast to the CWQI 

that can include any number of available parameters. Missing data (e.g., lost samples or 

incomplete coverage of required data at a site) prevent calculation of the complete SQI, and the 

index cannot be estimated without recalibration to include or exclude individual components. 

However, partial output for the SQI can be obtained if, for example, only stressor data are 

available. The overall SQI category cannot be assigned to a site for incomplete data, but the sub-

categories (e.g., biological condition category or stressor condition category) can still be 

obtained where the data are available. 

At the same time, the initial SQI described herein was purposefully restricted to a limited number 

of parameters to focus on developing the foundation of the index, as we were aware that a 

broader scope could preclude many sites from analysis. For example, CSCI and ASCI scores for 

the biological components of the SQI are available at over 1,000 sites in southern California, but 

combining these data with the required chemical and physical stressor data reduced the total 

number of sites where all components were available to 267 sites. An additional concern is our 

choice of predictors that were purposefully limited to the most relevant and ubiquitous data for 

describing eutrophication (water quality) and instream/riparian condition (physical habitat) in the 

study region. We realize that these variables are proxies and may also be correlated with other 

variables (e.g., stream temperature). Thus, causation can only be partially inferred with our 

models and more rigorous follow-up work would be needed to identify specific stressors. 

Similarly, recalibration of the model and choosing appropriate thresholds for defining categorical 

output would be required if the framework were applied in a different setting or context (e.g., 
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different regions or stressor gradients). This may also apply to the current dataset as new 

observations become available to best describe regional conditions. 

The SQI web application 

A web application was developed to make the SQI - and all of the foundational data for the 

overall SQI assessment - accessible to a broad user base, that in turn can readily share findings 

with high-level, non-technical managers and other stakeholders 

(https://sccwrp.shinyapps.io/sqi_shiny). The web interface uses an open source software program 

developed in R (Chang et al. 2018; RDCT (R Development Core Team) 2018) to automate batch 

calculation of the SQI at large numbers of sites (Beck and Mazor 2018). This allows the index 

and web application to be easily updated as new data become available for sites already in the 

database. 

The web app’s visualization features also support exploration of the data at both regional and site 

scales, encouraging users to explore results in different spatial contexts. Scores for each index 

component are provided alongside the option to view the underlying data that were used for the 

empirical stress models and categorical outcomes. A map allows for rapid comparison of sites of 

interest to the region as a whole, as well as county- or watershed-level summaries. The case 

study examples for San Diego and San Juan Creeks complemented site-specific information 

about each site to demonstrate how the SQI and its web application can support management 

decisions. With this information, managers can prioritize follow-up actions to identify causes of 

biological impacts (e.g., wildfire, bank erosion, or other sources) or pursue other appropriate 

management actions (e.g., formal causal analysis or site restoration). As such, the web 

application provides a screening tool to rapidly assess condition and identify potential stressors 

that may be impacting condition – insights that would be more difficult to identify via traditional 

research products (e.g., tabular data). 

Conclusions 

An integrated stream health index that synthesizes physical, chemical and biological indicators 

could be a powerful tool to support watershed management. The SQI accurately captures our 

understanding of the roles that physical, chemical and biological indicators play in describing 

stream health. Furthermore, the SQI not only combines the data into a single, managerially 

relevant categorical classification, but the tool also preserves the data underlying the integrated 

assessment, enabling managers to readily access this information as they work to better 

understand the reasons behind the overall assessment. 

The SQI is a viable approach for managers that need to synthesize large amounts of data, assign 

priorities based on this synthesis, and communicate these decisions to a broad range of high-level 

managers and other stakeholders who may lack familiarity with bioassessment and/or watershed 

science. In particular, the SQI could be used to convey critical insights for routine watershed 

assessments, permit reporting, and environmental report cards. Although the SQI is calibrated 

and validated specifically for southern California, USA, the approach could be applied anywhere 

with sufficient data. Many national and international monitoring programs that have collected 

data for several years could easily apply the SQI framework with alternative biological endpoints 

or stressor data. 

https://sccwrp.shinyapps.io/sqi_shiny
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SUPPLEMENT 

An interactive website is available for viewing results of the SQI: 

https://sccwrp.shinyapps.io/SQI_Shiny (Beck et al. 2019). An R package is also available for 

calculating SQI scores: https://github.com/SCCWRP/SQI (Beck and Mazor 2018). 
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